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A B S T R A C T   

With the energy density of intercalation electrodes approaching the ceiling, there are tremendous interests in 
developing metal oxide conversion type electrodes for lithium ion batteries, which involve more lithium ions in 
electrochemical reactions. Nevertheless, the cyclic and rate performances of conversion electrodes are rather 
poor, due to their large volume changes during charging and discharging, poor contact with current collector, 
and accumulated internal passivation over cycling. Here by carefully designing epitaxial array of Fe3O4 nanodots 
as a binder-free conversion electrode, we accomplish excellent rate performance under current density as high as 
60C with long cycling life and good capacity, and the detailed scanning transmission electron microscopy in 
combination with comprehensive electrochemical analysis suggest that the success can be attributed to the 
synergic effects of released internal stress, slowed internal passivation, and good structure integrity all rendered 
by the nanodot array architecture of Fe3O4. Our study thus overcome materials breakdown, contact failure, and 
internal passivation of conventional conversion electrodes, providing new insight into optimizing conversion 
electrodes for practical applications.   

1. Introduction 

The commercial success of lithium ion batteries (LIBs) is largely built 
on intercalation type electrode materials such as lithium transition 
metal oxides [1,2], though the number of lithium ions that can be 
reversibly inserted and extracted is limited, and the corresponding en-
ergy density is approaching the ceiling [3]. There are thus tremendous 
interests in developing conversion type electrodes such as metal oxides 
for LIBs [4–6], which involve more lithium ions in electrochemical re-
actions, and therefore promise much higher specific capacities. Never-
theless, the conversion electrodes often suffer from rapid capacity decay 
under cycling [7], and their rate performance under high current is 
rather poor [8], severely limiting their practical applications. Much 

effort thus has been devoted to understand the electrochemical process 
of conversion electrodes during charging and discharging, for example 
in Fe3O4, wherein the microstructure evolution has been extensively 
investigated [9–11]. 

Fe3O4 is one of the earliest conversion electrodes studied, pioneered 
by Thackeray and Goodenough in early 1980s [12], who uncovered 
two-step lithiation process of intercalation and conversion. They 
concluded that “Fe3O4 must therefore be regarded as attractive candidates 
for use in high energy-density batteries” [13], with a theoretical capacity of 
926 mA h/g [14], though this potential has yet to be practically realized. 
On one hand, the typical issue of volume changes during charging and 
discharging is substantial, as high as 100% for Fe3O4 [15,16], resulting 
in large deformation and internal stress and thus poor reliability. On the 
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other hand, it is also recently revealed that accumulation of internal 
passivation phase is significant [17], resulting in further capacity decay 
upon cycling and poor rate performance. The latter effect probably ex-
plains only limited success of nanocomposite electrodes based on Fe3O4 
despite extensive researches, especially on the rate performance 
[18–21]. Nevertheless, recent study also demonstrated that the cubic 
close packed oxygen-anion framework of Fe3O4 is retained upon lith-
iation, despite conventional belief that the crystalline structure of 
electrode would collapse during conversion process [22], rendering 
hope that the poor cycling performance of Fe3O4, especially under high 
current rate, can be mitigated. Indeed, by carefully designing epitaxial 
array of Fe3O4 nanodots as a binder-free electrode, we accomplish 
excellent rate performance under current density as high as 60C with 
long cycling life and good capacity, and the success can be attributed to 
synergic effects of released internal stress, slowed internal passivation, 
and good structure integrity all rendered by the nanodot array 
architecture. 

2. Results 

Fe3O4 crystallizes in cubic inverse spinel structure, as schematically 
shown in the left panel of Fig. 1a, with one unit cell containing 64 ox-
ygen tetrahedrons and 32 oxygen octahedrons [23]. At the first stage of 
lithium intercalation, as visualized in the right panel of Fig. 1a, the ferric 
irons in the oxygen tetrahedron is evolved into ferrous irons [12]. With 
further lithiation, the oxygen tetrahedrons and oxygen tetrahedrons in 
Fe3O4 are gradually occupied by lithium ions, and the structure is 
eventually evolved to form Li2O and Fe [24]. The theoretical capacity is 
thus calculated to be as high as 926 mA h/g [14], though the processes of 
charging and discharging are found to be highly irreversible, making 
cycling very challenging for LIBs [25]. To overcome such difficulty, 
Li-ion battery based on Fe3O4 array is designed as illustrated in Fig. 1b, 
with which we hope that the structure stability can be maintained 
during charging and discharging, and the reversibility of the battery can 
be improved. We thus produce epitaxial Fe3O4 array on Cu foil via pulse 
laser deposition (PLD) in combination with anodic aluminum oxide 
(AAO) template [26], which we believe can improve the quality of Fe3O4 

array substantially. The process is schematically shown in Fig. 1c, con-
sisting of mask transfer, Fe3O4 deposition, and mask removal steps. The 
morphologies of deposited Fe3O4 array before and after mask removal 
are examined by top-view scanning electronic microscopy (SEM) shown 
in Fig. 1d and e, revealing ordered array of Fe3O4 nanodots of approx-
imately 130 nm radius with uniform space of about 200 nm. Nanodots 
with different radius of 45 nm and 175 nm are also successfully fabri-
cated, as shown in Fig. S1 in the Supplementary Information (SI), 
illustrating high fidelity fabrication of ordered Fe3O4 array vertically 
grown on Cu foil as designed. 

The structure of as-deposited Fe3O4 is further examined by cross- 
sectional scanning transmission electron microscopy (STEM) image in 
Fig. 2a, revealing two nanodots of pyramid shape with thickness of 
~256 nm on the substrate. The corresponding energy dispersive spec-
troscopy (EDS) mappings in Fig. 2a exhibit uniform distribution of Fe 
and O within nanodots, connected by a thin layer of iron oxide of 
approximately 35 nm in thickness on top of Cu foil. The detailed atomic 
structure of a representative Fe3O4 nanodot with corresponding inter-
face with Cu is examined by high angle annular dark field mode 
(HAADF) in Fig. 2b, exhibiting excellent crystallinity that matches cubic 
inverse spinel structure well. The epitaxial growth of Fe3O4 can be 
clearly revealed by well-matched HAADF-STEM image and structural 
models at selected region of Cu–Fe3O4 interface in Fig. 2c, and the 
epitaxial relationship of Fe3O4 nanodot and Cu substrate is determined 
to be Fe3O4 [111]//Cu [011]. The Cu–Fe3O4 interfaces in Fig. 2a–c are 
found to be clean and sharp, demonstrating the high quality deposition 
of Fe3O4 and excellent contact between Fe3O4 and Cu, critical for its 
battery applications. The phase structure of Fe3O4 is further examined 
by X-ray photoelectron spectroscopy (XPS), as shown in Fig. 2d, wherein 
two peaks located at around 724.2 eV and 711 eV correspond to Fe 2p1/2 
and Fe 2p3/2, respectively [27]. Here Fe 2p3/2 peak can be deconvoluted 
into peaks located at 711.7 eV and 709.9 eV, corresponding to Fe3þ and 
Fe2þ as expected [28]. Moreover, there is no peak observed at about 719 
eV, which is usually considered as the fingerprint of γ-Fe2O3 [29], sug-
gesting that the as-deposited Fe3O4 is phase pure. More XPS results can 
be found in Fig. S2. Furthermore, the ordered Fe3O4 nanodots are 
examined by SEM images with EDS mappings in Fig. S3, again showing 

Fig. 1. Deposition of Fe3O4 array for LIBs. (a) Structure of Fe3O4 unit cell (left panel) and its evolved structure after lithium intercalation (right panel); (b) Schematic 
of LIBs based on Fe3O4 array; (c) Flowchart of epitaxial Fe3O4 array deposition on Cu foil using AAO template; (d,e) Top-view SEM images of Fe3O4 array before (d) 
and after (e) removal of AAO mask. 
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uniform distribution of Fe and O in the nanodots. These microscopic and 
spectroscopic data thus confirm the high quality phase pure Fe3O4 array 
on Cu foil. 

The electrochemical performance of Fe3O4 array in comparison with 
Fe3O4 film as anode material in LIBs are studied in Fig. 3. Cyclic Vol-
tammetry (CV) curves of Fe3O4 array with scanning rate of 0.1 mV/s in 
the first four cycles are examined in Fig. 3a, where the cathodic peak 
located at 0.94 V reveals the reduction of Fe3þ/Fe2þ to Fe0 process, as 
commonly reported in the literature [30,31], and more refined reduc-
tion steps cannot be resolved by CV due to their small difference [13]. 
The small reduction peak at 1.56 V in the first cycle can be attributed to 
the formation of solid electrolyte interface (SEI) [32]. For the anodic 
process, there are two peaks located at around 1.63 V and 1.77 V, cor-
responding to the oxidation of Fe0 to Fe2þ and Fe3þ, respectively [33]. 
Noting that these CV curves from 2nd to 4th cycles overlap with each 

other well, indicting reversible and stable cyclic performance of 
epitaxial Fe3O4 array under the small scanning rate. Galvanostatic 
discharge-charge voltage profiles of Fe3O4 array at a current density of 
5C are presented in Fig. 3b. The voltage plateau of first discharge curve 
is located at about 0.76 V, which is smaller than that of other cycles at 
about 1.0 V, and this can be attributed to the formation of SEI layer [32]. 
The initial discharge-charge specific capacities are measured to be 1350 
mA h/g and 1106 mA h/g, respectively, corresponding to a columbic 
efficiency of 85%. It is quite high for the initial columbic efficiency, 
suggesting less irreversible electrochemical reaction in SEI layer, which 
is attributed to the well-ordered nanodot array with large specific sur-
face area that facilitates rapid formation of stable SEI layer [34]. The 
discharge specific capacities of 2nd and 3rd cycles drop to 935.6 mA h/g 
and 891.3 mA h/g, and with further cycling, the specific capacity de-
creases gradually, reaches about 550 mA h/g at 100th cycle and 

Fig. 2. Structure of as-deposited Fe3O4 array. (a) Cross-sectional STEM image of Fe3O4 array with elemental mappings of Fe, O and Cu; (b) Atomically resolved 
HAADF-STEM image at the interface between Fe3O4 nanodot and Cu foil substrate; (c) HAADF-STEM image at selected region of Cu–Fe3O4 interface. Overlaid 
structural models identify the Fe3O4 and Cu atomic columns. Fe and Cu atomic columns are shown in blue and yellow, respectively. The oxygen atoms are not shown 
for clarity; (d) XPS of Fe 2p from Fe3O4 array. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 3. Electrochemical performance of Fe3O4-based LIBs. (a) CV curves of the first four cycles of Fe3O4 array; (b) Galvanostatic discharge-charge voltage profiles 
with a current density of 5C for different cycles; (c) Cyclic performance of Fe3O4 array and film under a current density of 5C; (d,e) Nyquist plots of the AC impedance 
for 1st, 5th, 50th, and 100th cycles of Fe3O4 array (d) and film (e); and (f,g) the comparisons of the corresponding RS (f) and RCT (g). 
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maintains 350 mA h/g at 400th cycle. As a result, Fe3O4 array exhibits 
relatively stable performance with long cycling life for LIBs under a 
pretty high current of 5C, as shown in Fig. 3c, wherein data for Fe3O4 
film is also presented. In comparison, Fe3O4 film delivers initial 
discharge and charge specific capacity of 1164 mA h/g and 526 mA h/g, 
respectively, corresponding to a columbic efficiency of only 45%. Sub-
sequently, Fe3O4 film exhibits a capacity of 330 mA h/g and 123 mA h/g 
at 100th and 400th cycles, which are much smaller than those of Fe3O4 
array, with faster decay. 

To better understand the enhanced specific capacity with good cyclic 
stability of Fe3O4 array, electrochemical impedance spectroscopy (EIS) 
of Fe3O4 array and film at the 1st, 2nd, 50th, and 100th cycles are 
studied in Fig. 3d and e, respectively. One depressed semi-circles in the 
high frequency regions are observed in the Nyquist plots of both array 
and film (1st cycle), though it becomes linear for Fe3O4 film at 100th 
cycles. It is also evident that Fe3O4 array possesses much smaller 
impedance than that of film, as shown by the comparisons of fitting 
parameters plotted in Fig. 3f and g, extracted from an equivalent circuit 
shown in Fig. S4. Here RS represents the contact and solution resistance 
in the high-frequency region, while RCT denotes charge transfer resis-
tance in the middle-frequency region [35]. It is observed that RS of Fe3O4 
array is not only much smaller because of its larger specific surface area, 
but also more stable with cycling, increasing from 9.9 Ω in the first cycle 
to 11.7 Ω at the 100th cycles, respectively. RS of Fe3O4 film, on the other 
hand, increases from 22.4 Ω in the first cycle to 25.4 Ω at 50th cycle, and 
the spectroscopy becomes linear at 100th cycle, indicating that Liþ

diffusion process becomes dominant during the electrochemical process 
[36]. Furthermore, RCT of Fe3O4 array is 229.4 Ω in the first cycle, and 
then decreases to 205.3 Ω, 200.6 Ω, 201.8 Ω at 5th, 50th, and 100th 
cycles, which is attributed to the enhanced electrochemical activity of 
Fe3O4 array after the formation of stable SEI layer at 1st cycle. The 
relatively stable RCT also indicates reversible expansion and shrinkage of 
electrode during conversion-type electrochemical reaction. RCT of Fe3O4 
film, on the other hand, is 188.9 Ω at first cycle, and increases to 221 Ω 
and 280.6 Ω at 5th and 50th cycles, indicating irreversibility of elec-
trochemical reaction, which is believed to be caused by SEI formation 
and electrode damage [37]. These results indicate that well-ordered 

Fe3O4 array possesses stable structure and electrode/electrolyte inter-
face for enhanced cycling performance. 

In addition to cyclability at a high current density, Fe3O4 array also 
displays remarkably high rate capability, as shown in Fig. 4a in com-
parison to Fe3O4 film. The Fe3O4 array/film delivers specific capacities 
of 529.1/607.7, 561.6/618.8, 550.1/552.6, 501.5/424.8, 406.5/288.4 
and 312.5/222.3 mA h/g at current densities of 1, 2, 5, 10, 30 and 60C, 
respectively. Notice that the specific capacities of these two types of 
electrodes are similar at 1, 2, and 5C with those of film electrode slightly 
higher, yet at high current densities of 30 and 60C, Fe3O4 array exhibits 
much larger capacity than film. Furthermore, Fe3O4 array/film maintain 
reversible specific capacity of 444.3/418.4, 366/275.7, 550.6/364.8 
and 487.5/302.6 mA h/g under current densities of 5, 10, 2, and 5C 
tested between 100th and 140th cycles, after which Fe3O4 array delivers 
a high specific capacity of 427.5 mA h/g up to 180 cycles at 10C. Fe3O4 
film, on the other hand, maintains a specific capacity of only 164.6 mA h 
g� 1 at 180 cycles under 10C. More comparisons for Fe3O4 arrays with 
different diameters are shown in Fig. S5, all of which exhibits good rate 
capability, while 130 nm is optimal among the systems we studied. 

Galvanostatic discharge-charge voltage profiles of Fe3O4 in different 
cycles under 2C are presented in Fig. 4b. Note that the discharge-charge 
specific capacity of Fe3O4 array shows small change within a narrow 
range between 600 mA h/g to 540 mA h/g at 15th, 95th, and 125th 
cycles, yet substantial specific capacity difference can be found for 
Fe3O4 film. The much enhanced rate capability of Fe3O4 array can be 
understood from SEM images of Fe3O4 array and film after 100 cycles 
under an ultrahigh current density of 60C shown in Fig. 4c and d. While 
cracks clearly develop in Fe3O4 film, the structure of well-ordered 
nanodot array is maintained after long cycling under such a high cur-
rent density. This is attributed to the spaced nanodot array that can 
effectively accommodate volume expansion and contraction during Liþ

insertion/deinsertion [38,39]. The well-ordered Fe3O4 array having 
tight contact with Cu foil current collect provides rapid electronic 
transport route, ideal for high rate applications. We also compare elec-
trochemical performance of various nanostructured Fe3O4 for LIBs 
[18–21,31,40–52] in Fig. 4e, from which it is evident that our phase 
pure Fe3O4 array clearly stands out and outperforms other composite 

Fig. 4. Rate performance of Fe3O4 array and film. (a) Rate capability of Fe3O4 array and film; (b) Galvanostatic discharge-charge voltage profiles of different cycles at 
a current density of 2C; (c,d) Top-view SEM images of Fe3O4 array (c) and film (d) after 100 cycles at a ultrahigh current density of 60C; (e) Comparison of 
electrochemical performance for Fe3O4 based electrodes as anode material for LIBs. 
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systems, especially under high current rate. 
The outstanding electrochemical performance of Fe3O4 array, espe-

cially under high current density, can be attributed to its structural 
stability during Liþ insertion and deinsertion. To appreciate this, we 
carry out detailed structure analysis at charged and discharged stages 
after cycling. Charged Fe3O4 array after 10 cycles is examined in 
Fig. 5a–d, where the cross-sectional STEM image in Fig. 5a clearly re-
veals one independent nanodot on Cu foil, confirming that the structure 
of Fe3O4 array is largely maintained after cycling. The SAED pattern in 
Fig. 5b obtained from the nanodot can be determined as from Fe3O4 
phase. The EDS mappings in Fig. 5c reveal the uniform distribution of Fe 
and O elements in the nanodot, showing good interface with Cu main-
tained, and more data can be found in Figs. S6a–d. The atomic structure 
of charged nanodot is revealed by STEM image in Fig. 5d, confirming its 
Fe3O4 phase. It should be noted that in addition to Fe3O4, LixFe3O4 and 
FeO are also observed, with more information in Figs. S6f–g, consistent 
with previous reports on conversion-type electrodes [17]. Regarding the 
discharged stage, we examine Fe3O4 array after 50 cycles. The nanodot 
structure of Fe3O4 is largely maintained as shown in Fig. 5e and Figs. S7a 
and b. More importantly, the Fe and Li2O phases are clearly observed in 
Fig. 5f, though there are also Fe3O4 phase remaining, suggesting some 
irreversible/incomplete reactions. EDS mappings in Fig. 5g and electron 
energy loss spectroscopy (EELS) mappings in Fig. S7c confirm the uni-
form distribution of Fe, O, Li elements in nanodot and well-maintained 
interface at discharged stage. Furthermore, detailed atomic structure in 
Fig. 5h and Figs. S7d and e confirm the existence of Fe and Fe3O4 phase 
in the nanodot after discharging. These systematic studies on the 
detailed structure evolution of Fe3O4 array at charged and discharged 
stages after cycling not only demonstrate the structure stability of Fe3O4 
after cycled Liþ insertion/deinsertion, but also confirm good electro-
chemical activity of Fe3O4 electrode under both charge and discharge 
processes. 

Recently, it has been reported that the formation and accumulation 
of a passivation layer, verified to be the products of conversion reaction, 

Li2O, is responsible for the poor cyclic and rate performance of 
conversion-type electrode [17]. While the formation of metallic nano-
particles improves the electronic conductivity, the rapid accumulation 
of Li2O between metallic nanoparticles functions as a passivation layer, 
gradually impeding electrochemical reactions due to its poor electronic 
conductivity. To examine this effect in our Fe3O4 nanodot, we analyze 
HAADF-STEM images of Fe3O4 array after 10 cycles and 50 cycles as 
shown in Fig. 6a and b. The nanoparticles with bright contrast corre-
spond to the iron or iron oxides, while the dark gap is considered to be 
Li2O phase based on previous report [17,53]. To facilitate quantitative 
comparison, the distributions of particle size and gap between particles 
are extracted from the STEM images after 10 cycles and 50 cycles as 
shown in Fig. 6c and d, obtained from different regions over 1.2 � 104 

nm2 including the regions shown in Fig. 6a and b and representative 
regions in Fig. S8. While data for 50 cycles become more scattering with 
increased numbers for larger particle size and gap, the average particle 
size only increases slightly, from 3.60 nm after 10 cycles to 3.62 nm after 
50 cycles. Similar trend is also observed for gap between particles, 
increasing from 2.31 nm after 10 cycles to 2.34 nm after 50 cycles, 
indicating rather slow accumulation of passivation layers with increased 
electrochemical cycles. Note that the particle size is much smaller than 
previous report of approximately 8–10 nm [17,54], and very few large 
particles around 10 nm can be found after 50 cycles, and thus the growth 
of internal passivation is also much slower than previous report. These 
detailed microstructural study thus shed further light into the 
outstanding electrochemical performance of Fe3O4 array electrode. In 
particular, not only the global array structure of Fe3O4 is largely intact 
upon cycling, but also the local phase microstructure is stable, with 
much slower augmentation of the passivation layers. 

3. Conclusion 

In summary, epitaxial array of Fe3O4 nanodots has been deposited on 
Cu foils by AAO-assisted PLD, resulting binder-free conversion electrode 

Fig. 5. Phase evolution of Fe3O4 array during cycling. (a–d) STEM image, SAED pattern, EDS mappings and atomic-resolution HAADF-STEM image of charged Fe3O4 
array after 10 cycles; (e–h) STEM image, SAED pattern, EDS mappings and atomic-resolution HAADF-STEM image of discharged Fe3O4 array after 50 cycles. 
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in LIBs with remarkably high rate capability and long cycling life. For 
conventional conversion-type electrodes, the rapid capability fading is 
usually caused the materials breakdown, contact failure, and internal 
passivation, while our Fe3O4 array electrode address these three issues 
comprehensively, rendering new insight into optimizing conversion 
electrodes for practical applications. 
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Fig. 6. Microstructural evolution of Fe3O4 array during cycling. (a,b) Typical 
HAADF-STEM morphology of Fe3O4 array electrode after 10 cycles charged (a) 
and 50 cycles discharged (b). The double-headed arrow is used to mark the 
particles with bright contrast and the gap between fine particles with dark 
contrast. (c,d) The distributions of particle size and the gap between fine par-
ticles extracted from the STEM images of Fe3O4 array electrode after 10 cycles 
(c) and 50 cycles (d) over 1.2 � 104 nm2. 
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