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Since the invention of integrated circuits in the late 1950s1, sili-
con has been the dominant semiconductor for microelectron-
ics. In addition to its moderate bandgap, excellent chemical 

stability and abundance in the lithosphere, silicon benefits from 
having a native oxide—silicon dioxide (SiO2). Highly dense and 
uniform layers of SiO2, obtained from thermal oxidation of silicon, 
can serve as a hard mask to protect silicon wafers from contamina-
tion and also as the gate dielectric in silicon field-effect transistors 
(FETs) because of its insulating properties and the excellent inter-
face quality between silicon and SiO2 (refs. 2,3). Selective etching of 
SiO2 over silicon further allows the microfabrication of complicated 
integrated circuits4.

However, silicon-based FETs face various challenges at 
sub-10-nm nodes, the most prominent of which are reduced mobil-
ity and increased short-channel effects5. It is thus desirable to develop 
high-mobility semiconductors to replace silicon as devices are further 
scaled in line with Moore’s law. Possible materials for this challenge 
include SiGe6, Ge7, III–V semiconductors8 and two-dimensional 
(2D) electron gas systems9 such as LaAlO3/SrTiO3. High-mobility 
low-dimensional semiconductors such as 1D carbon nanotubes10,11, 
2D transition metal dichalcogenides12, 2D black phosphorus13 and 
2D InSe14, also have potential to extend Moore’s law by suppress-
ing short-channel effects due to their atomically thin structures15–19. 
However, none of these materials can challenge the dominance  

of silicon in microelectronics, partly due to the lack of a stable native 
oxide that is compatible with the semiconductor20,21. Although much 
effort has been made on the oxides of SiGe22, Ge23, III–V semicon-
ductors24, 2D MoS2 (ref. 25), 2D TaS2 (ref. 26), 2D HfS2 (ref. 27), 2D 
WSe2 (ref. 28), 2D HfSe2 and ZrSe2 (ref. 29,30), the oxides of these 
materials are generally non-stoichiometric and highly defective at 
the oxide–semiconductor interface. A semiconductor and its native 
oxide that rivals the performance of Si/SiO2 has yet to be found.

In this Article, we show that atomically thin dielectric layers 
of bismuth selenite (Bi2SeO5) can be conformally formed through 
layer-by-layer oxidation of the underlying 2D Bi2O2Se semicon-
ductor at elevated temperatures, ensuring an atomically sharp 
and chemically clean interface. Due to its high dielectric con-
stant (εr ≈ 21), and good band alignment with the semiconductor, 
the insulating Bi2SeO5 can directly serve as an ideal gate dielec-
tric for Bi2O2Se FETs. The resulting devices exhibit high apparent 
field-effect mobilities of >300 cm2 V−1 s−1, high current on/off ratios 
of >105, and low subthreshold swing values of ~75 mV dec−1 at room 
temperature. Bi2SeO5 can also be selectively etched away while keep-
ing the underlying Bi2O2Se nearly unchanged.

Lattice and band structure of Bi2O2Se and Bi2SeO5
As illustrated in Fig. 1a, layered Bi2O2Se is an emerging high-mobility 
2D semiconductor31,32 that is a tetragonal system with I4/mmm 
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space group (a = b = 3.88 Å, c = 12.16 Å, Z = 2) and is composed 
of positively charged [Bi2O2] layers and negatively charged Se lay-
ers along the c axis. After thermal oxidation at elevated tempera-
tures, more oxygen atoms intercalate into the structure, connecting 
all Se and Bi atoms into a network to form a dense Bi2SeO5 phase 
with Abm2 space group (a = 11.42 Å, b = 16.24 Å, c = 5.49 Å, Z = 8). 
Unlike ordinary metal oxides that constantly suffer from oxygen 
vacancies and variable valence of metals20–30, the oxidation product 
of Bi2O2Se is a thermodynamically stable bismuth selenite Bi2SeO5 
(Supplementary Fig. 1), where the valence state of bismuth is fixed 
at +3 and that of selenium at +4. The chemical equation of this 
reaction process is given by

Bi2O2Seþ 3=2O2 ¼ Bi2SeO5 ð1Þ

Bi2O2Se can be converted gradually into Bi2SeO5 in a layer-by-layer 
manner, eventually forming a pure Bi2SeO5 phase (for details 
see Supplementary Figs. 1 and 2). An atomically sharp interface 
between the top Bi2SeO5 and underlying 2D Bi2O2Se layers was 
confirmed by cross-sectional scanning transmission electron 
microscopy of the heterostructure (Fig. 1b). We also performed 
ab initio calculations to investigate the band alignment between 
Bi2O2Se and Bi2SeO5. As shown in Fig. 1c, Bi2O2Se has a narrow 
indirect bandgap of 1.09 eV (close to ~0.8 eV, as measured by 
angle-resolved photoemission spectroscopy32) with a valence band 
maximum (VBM) at the X point and conduction band minimum 
(CBM) at the Γ point, whereas Bi2SeO5 has a much wider band-
gap of ~3.9 eV with both the CBM and VBM at the Z point. More 
importantly, the energy band offset between these two materials 
is 1.7 eV for the CBM and 1.1 eV for the VBM, respectively, which 
satisfies the criterion for the band offset (>1 eV) for a practical gate 
dielectric to minimize leakage current. The calculation was further 

verified experimentally by ultraviolet photoelectron spectroscopy 
(Supplementary Fig. 3; for more details of theoretical calculations 
see Supplementary Figs. 4–6).

Controlled oxidation and selective etching
To optimize the Bi2O2Se/Bi2SeO5 heterostructure, we systemati-
cally investigated the thermal oxidation behaviour of 2D Bi2O2Se 
crystals synthesized by chemical vapour deposition on mica sub-
strates. We used optical microscopy to monitor the morphological 
evolution of the Bi2O2Se nanoplates under thermal treatment in 
air (Supplementary Fig. 2). The Bi2O2Se nanoplates are shown to 
undergo significant changes in transparency while maintaining their 
shape, indicating an enlarged bandgap. Atomic force microcopy 
(AFM) showed that the surfaces of Bi2O2Se after thermal oxidation 
remain atomically smooth, with an expected height expansion. As 
seen in Fig. 2a, by carefully adjusting the oxidation temperature in the 
range of 370–400 °C, the thickness of a four-layer Bi2O2Se nanoplate 
shows a linear relationship with respect to the oxidation time in the 
first 20 min. Notably, the sample thickness increases by ~0.2 nm per 
layer until all four layers of Bi2O2Se are converted to Bi2SeO5, beyond 
which the sample thickness is saturated. Based on the unit cell vol-
ume and coordination number Z, an increase of 0.24 nm in thickness 
is expected along the c axis when one layer of Bi2O2Se (thickness of 
0.61 nm) is converted into Bi2SeO5 (Fig. 2a, insets), consistent with 
our experimental observations. At higher temperatures, the oxida-
tion process is significantly accelerated so that thicker oxide layers 
can also be achieved (Supplementary Fig. 7). It is worth noting that, 
despite its reactivity at elevated temperatures, Bi2O2Se is stable under 
ambient conditions (Supplementary Figs. 8 and 9).

In the modern semiconductor industry, selective etching of SiO2 
plays a key role in the creation of very-large-scale integrated circuits. 
Bi2SeO5 can also be selectively etched over Bi2O2Se by using diluted 
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Fig. 1 | Crystal and electronic structures. a, Crystal structure of layered Bi2O2Se and its native oxide Bi2SeO5. Top: step-by-step oxidation of multilayer 
Bi2O2Se. b, Cross-sectional high-angle annular dark-field image of the Bi2O2Se/Bi2SeO5 heterostructure, showing an atomically sharp interface. c, Energy 
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HF acid (0.2%). The selectivity of HF etching is estimated to be greater 
than 100 (Supplementary Fig. 10), which is satisfactory when com-
pared with the wet etching of SiO2. For example, a 3-unit-cell (3-UC) 
Bi2O2Se nanoplate can be reduced to a single unit cell after oxidation 
and HF etching (Fig. 2b). More importantly, as illustrated in Fig. 2c 
(see Supplementary Fig. 11 for details), the surface of 2D Bi2O2Se 
nanoplates remains ultra-smooth, even after thermal oxidation 
(standard deviation of roughness Ra ≈ 1.3 Å) and subsequent etching 
(Ra ≈ 1.6 Å), showing only a slight increase of surface roughness com-
pared with the pristine Bi2O2Se (Ra ≈ 1.0 Å). Using selective etching 
and standard electron-beam lithography, complicated patterns (such 
as a giant panda) can be fabricated (Fig. 2d). The spatial resolution of 
this pattern (~1 μm) is superior to that of wet etching of SiO2 (ref. 4).

Dielectric properties
To evaluate the potential of Bi2SeO5 as a gate dielectric, we mea-
sured the dielectric properties of Bi2SeO5 thin films thermally oxi-
dized from Bi2O2Se grown on Nb-doped SrTiO3 substrates. The 
device configuration for capacitance–voltage (C–V) measurements 
is shown in Fig. 3a and Supplementary Fig. 12, where ~20-nm-thick 
Bi2SeO5 film is sandwiched between the top Au electrode and 
the conductive Nb-SrTiO3 substrate. The relative permittivity of 
Bi2SeO5 is calculated by

C ¼ Aε0εr=d ð2Þ

where C is the measured capacitance, ε0 is the vacuum permittiv-
ity, εr is the relative permittivity, A is the area of the Au electrode 

and d is the thickness of the Bi2SeO5. Figure 3a shows that, for a 
d.c. bias ranging from −2.5 V to 2.5 V, εr stays at ~21 with no dis-
cernible fluctuations, indicating that Bi2SeO5 is a stable high-κ 
dielectric (κ, dielectric constant). Temperature-dependent mea-
surements show that Bi2SeO5 retains its high-κ nature from 80 to  
330 K (Fig. 3b), with little variation near room temperature  
(280–330 K). For oxide thickness below 20 nm, the C–V mea-
surements based on metal–insulator–metal structures become  
difficult due to the relatively large leakage current at high biases.  
To this end, we performed quantitative microwave impedance 
microscopy (MIM)33 to determine the thickness-dependent 
dielectric constant of Bi2SeO5 at ~3 GHz. As shown in Fig. 3c (see 
Supplementary Fig. 13 for details), the microwave permittivity of 
Bi2SeO5 stays at around 21 and only decreases slightly for thick-
nesses below 5 nm, which corresponds to an equivalent oxide thick-
ness (EOT) as small as 0.9 nm. The persistence of high κ into the 
microwave regime and ultrathin limit is compelling for high-speed 
electronic applications and will continue to be explored in our 
future work.

Another important factor for evaluation of a gate dielectric is the 
leakage current, which contributes to the static power consumption 
of an integrated circuit and should be kept below a certain level. 
For the device in Fig. 3a, the measured leakage current of Bi2SeO5 
is lower than 1 × 10−7 A cm−2 under an external field strength of 
1 MV cm−1 (Fig. 3d), which meets the criteria for most demanding 
dynamic random access memory applications2. For an external field 
as high as 2 MV cm−1, the leakage current of Bi2SeO5 is still several 
orders of magnitude smaller than the low-power limit and standard 
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complementary metal–oxide–semiconductor gate limit. This gate 
leakage of Bi2SeO5 is comparable to that of thermal SiO2 with the 
same EOT of ~3.6 nm.

FeTs and inverter circuits
The exquisite electrical properties of Bi2SeO5 and its compati-
bility with microprocessing facilitate the fabrication of top-gated 
Bi2O2Se FETs with its native oxide as the gate dielectric (Fig. 4a and 
Supplementary Fig. 14). Here, Fe/Au were used for the source and 
drain electrodes to form ohmic contacts to the 2D Bi2O2Se. For gate 
electrodes, we used Pd/Au to match the work function between 
Pd (5.1 eV) and Bi2O2Se (~5.1 eV). As shown in Fig. 4b, the out-
put characteristics of a Bi2O2Se FET with ~20-nm-thick Bi2SeO5 
native gate dielectric (EOT ≈ 3.6 nm) exhibit typical n-type behav-
iour with a linear Ids–Vds at low bias and saturation at high bias, 
indicative of negligible Schottky barriers at the source and drain 
metal contacts. Room-temperature transfer curves at different  
Vds show a steep rise of drain current with a subthreshold slope of 
~75 mV dec−1 (Supplementary Fig. 15), approaching the thermal 
limit of ~60 mV dec−1 at 300 K. Compared with devices with HfO2 
as the top gate, Bi2O2Se/Bi2SeO5 FETs exhibit much weaker hyster-
esis between forward and reverse gate sweeps in transfer curves 
(Supplementary Fig. 16), signifying the presence of a clean semicon-
ductor–oxide interface. Meanwhile, the Ion/Ioff of this device (>105) 
meets the standard for practical logic circuits (104) with no obvious 
drift in the threshold voltage. The maximum apparent field-effect 
mobility in our Bi2O2Se/Bi2SeO5 FETs is over 300 cm2 V−1 s−1 while 
maintaining a moderate threshold voltage of approximately −1 V 
(Supplementary Fig. 17). To accurately demonstrate the intrinsic  

mobility of Bi2O2Se with native gate oxide Bi2SeO5, Hall-effect  
measurements will be required in the future.

Taking advantage of the facile patterning technique, we are able 
to fabricate simple logic circuits based on Bi2O2Se/Bi2SeO5 FETs 
(Supplementary Fig. 18). Figure 4d illustrates the most essential NOT 
gate (also known as an inverter), which operates between 0 V (logic 
state 0) and 1 V (logic state 1) with a voltage gain as high as 150. To 
our knowledge, this large voltage gain exceeds previously reported 
devices based on 2D and other nanostructured semiconductors34,35.

To demonstrate the scaling potential of Bi2SeO5 as gate dielec-
trics, we fabricated top-gated Bi2O2Se FETs with ~5 nm Bi2SeO5 
as the native gate oxide (EOT ≈ 0.9 nm), showing Ion/Ioff ≈ 105, an 
apparent field-effect mobility of ~250 cm2 V−1 s−1, a subthreshold 
swing of less than 75 mV dec−1 and a breakdown voltage larger than 
8 V (Supplementary Fig. 19). Other FETs with thinner gate dielec-
trics (EOT < 0.9 nm) and logic gates or even integrated circuits may 
also be fabricated by using a similar protocol in the future.

Conclusions
We have reported the fabrication of FET devices in which an atomi-
cally thin high-mobility semiconductor channel material (Bi2O2Se) 
is integrated with a native oxide high-κ gate dielectric (Bi2SeO5). Our 
approach can create an atomically sharp and chemically clean semi-
conductor–oxide interface, as illustrated by the low hysteresis of the 
devices. The high dielectric constant and robustness of Bi2SeO5 also 
offers considerable scaling potential, down to an EOT of 0.9 nm. 
This material system, which supports selective etching and scalable 
patterning, provides an opportunity to adapt existing silicon-based 
semiconductor technology to high-mobility 2D materials.
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Methods
Synthesis of Bi2O2Se and Bi2SeO5 crystals. 2D Bi2O2Se crystals were synthesized 
using a procedure similar to that described in refs. 31,36. Bi2O3 powder (Alfa Aesar, 
5 N) and Bi2Se3 pieces (Alfa Aesar, 5 N) were placed separately in the hot zone centre 
and upstream area of a horizontal tube furnace and a 40-mm-diameter quartz tube. 
Freshly cleaved fluorophlogopite mica or strontium titanate (STO) was placed in 
the downstream area as the growth substrate. Argon or an argon–oxygen mixture 
(100 ppm oxygen) was used as the carrier gas to transport the vapour precursors to 
the cold region. Typical growth conditions were as follows. The source temperature 
was 600–620 °C and the substrate growth temperature was 480–550 °C. The system 
pressure was in the range of 100–1,000 torr and the carrier gas flow rate was 160–
230 s.c.c.m. for argon and ~10–35 s.c.c.m. for the argon–oxygen mixture (100 ppm 
oxygen). The growth time ranged from 20 to 30 min. Bi2SeO5 was obtained by treating 
as-grown 2D Bi2O2Se crystals under an oxidation temperature of 370–400 °C in air.

As-grown 2D Bi2O2Se and Bi2SeO5 oxides were examined by optical microscopy 
(Olympus DX51 microscope), AFM (Bruker Dimension Icon with Nanoscope 
V controller) and X-ray diffraction (Rigaku D/Max-2000 diffractometer, Cu Kα 
radiation (λ = 0.15406 nm) at 40 kV and 100 mA).

Ab initio calculations. To resolve the band structure, we first performed ab initio 
calculations for Bi2O2Se and Bi2SeO5. Density functional theory calculations 
within the generalized gradient approximation (GGA) were performed using 
the Vienna ab initio simulation package with core electrons represented by the 
projector-augmented-wave potential37. Plane waves with a kinetic energy cutoff of 
400 eV were used as the basis set. A k-point grid of 3 × 10 × 5 was used for Brillouin 
zone sampling. Geometry optimization was carried out until the residual force on 
each atom was less than 0.01 eV Å−1. In addition, the Heyd–Scuseria–Ernzerhof 
(HSE) hybrid functional38,39 (HSE06) was used for calculating the bandgaps. GGA 
gave an indirect bandgap of 0.45 eV for Bi2O2Se and a direct bandgap of 2.83 eV for 
Bi2SeO5, while HSE06 gave an indirect bandgap of 1.09 eV for Bi2O2Se and a direct 

bandgap of 3.90 eV for Bi2SeO5. We applied scissor corrections of 0.64 and 1.07 eV 
for Bi2O2Se and Bi2SeO5, respectively, to the corresponding GGA band structures 
according to the HSE06 gaps in Fig. 1c.

Metal–insulator–metal device fabrication and electrical measurements. The 
metal–insulator–metal capacitor shown in Fig. 3a was fabricated as follows.  
A continuous Bi2O2Se thin film grown on Nb-doped strontium titanate (Nb-STO) 
was fully oxidized into Bi2SeO5. Electron-beam lithography (EBL) was then used 
to write Pd/Au top electrodes (5/60 nm). Note that two layers of photoresist 
(conductive protective coating SX AR-PC-5000 and poly(methyl methacrylate) 
(PMMA)) were used to prevent charge accumulation on the insulating mica 
substrate during EBL.

Capacitance–voltage measurements were carried out on a semiconductor 
analyser (Keithley, SCS-4200) combined with a home-made cryogenic probe 
station covering the temperature range from 80 K to 330 K.

MIM measurements. The MIM experiment in Fig. 3c was carried out on a 
commercial AFM platform (Park AFM XE-70)31. For quantitative measurements, 
we used a tuning-fork-based probe40 to simultaneously obtain the topography and 
microwave images (Supplementary Fig. 13). The demodulated MIM signals were 
then compared to the finite-element analysis (FEA) results to extract the dielectric 
constant at ~3 GHz.

Logic device fabrication and electrical transport measurements. Top-gate 
FETs were fabricated directly on as-grown nanoplates on an insulating mica 
substrate. Alignment marker arrays were first predefined onto the mica with 
standard photolithography techniques. These samples were then oxidized in a tube 
furnace to form a Bi2O2Se/Bi2SeO5 heterojunction. After that, the EBL process was 
used to create a PMMA mask that exposed the source/drain region of the FET 
devices. After 20 s of treatment with 0.2% HF solution, the top layer of Bi2SeO5 at 
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the source/drain region was removed. A second standard EBL process was then 
performed to deposit Pd/Au gate electrodes (5/60 nm). To finish the FET device 
fabrication, a third EBL process was subsequently carried out to deposit Fe/Au as 
the source and drain electrodes (5/60 nm).

The fabrication of inverter circuits was largely the same as the fabrication of 
the FET devices. To obtain the two identical FETs required for inverters, a single 
Bi2O2Se nanoplate was etched into two identical parts, using EBL-patterned 
PMMA as the mask and H2SO4/H2O2 solution as the etchant (10% H2SO4 + 10% 
H2O2)41. The subsequent oxidation and electrode deposition processes were the 
same as for the FET device fabrication.

Electrical measurements of the top-gated FETs were carried out on a 
semiconductor analyser (Keithley, SCS-4200) combined with a micromanipulator 
6200 probe station at room temperature under ambient conditions.

Data availability
The data that support the plots within this paper and other findings of this study 
are available from the corresponding author upon reasonable request.
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