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a b s t r a c t 

Defects in organic-inorganic hybrid perovskites (OIHPs) greatly influence their optoelectronic properties. 

Identification and better understanding of defects existing in OIHPs is an essential step towards fabricat- 

ing high-performance perovskite solar cells. However, directly visualizing the defects is still a challenge 

for OIHPs due to their sensitivity during electron microscopy characterizations. Here, by using low dose 

scanning transmission electron microscopy techniques, we observe the common existence of antiphase 

boundary (APB) in CH 3 NH 3 PbI 3 (MAPbI 3 ), resolve its atomic structure, and correlate it to the electri- 

cal/ionic activities and structural instabilities. Such an APB is caused by the half-unit-cell shift of [PbI 6 ] 
4 −

octahedron along the [100]/[010] direction, leading to the transformation from corner-sharing [PbI 6 ] 
4 −

octahedron in bulk MAPbI 3 into edge-sharing ones at the APB. Based on the identified atomic-scale con- 

figuration, we further carry out density functional theory calculations and reveal that the APB in MAPbI 3 
repels both electrons and holes while serves as a fast ion-migration channel, causing a rapid decomposi- 

tion into PbI 2 that is detrimental to optoelectronic performance. These findings provide valuable insights 

into the relationships between structures and optoelectronic properties of OIHPs and suggest that con- 

trolling the APB is essential for their stability. 

© 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Organic-inorganic hybrid perovskites (OIHPs) hold great 

romise for the next-generation solar cells because of their im- 

ressive power conversion efficiency (PCE) and facile cost-effective 

rocessing route [1–4] . During the synthesis of OIHPs, the com- 
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arably low temperature and fast nucleation and crystallization 

rom the solution inevitably cause unintentional point and planar 

efects [5] . The defects density (10 16 –10 17 cm 

−3 ) in a solution 

eposited CH 3 NH 3 PbI 3 (MAPbI 3 ) film is much higher than that in 

 single crystal MAPbI 3 (10 10 –10 11 cm 

−3 ) [6] . These defects greatly 

nfluence the electrical and ionic activities and are considered to 

e responsible for the hysteresis, charge trapping and scattering, 

nd ion migration in OIHPs, further causing inferior performance 

nd instability [6] . For example, the point defects such as cation 

ntistites and Pb interstitials in OIHPs cause deep-level defects and 

https://doi.org/10.1016/j.actamat.2022.118010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/actamat
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onradiative recombination centers [7] , which trap charges and 

imit the photovoltaic performance. Li et al. reported that the PCE 

nd the lifetime of the carrier are deteriorated with the increased 

ensity of twinning and stacking faults in perovskite solar cells 

PSCs) [5] . Moreover, the defect density at the grain boundary 

GB) is several orders of magnitude higher than that inside of 

he grain [8] while GB is generally considered as a shortcut for 

on migration [9] , leading to large hysteresis [10] . Moreover, some 

uggest that GB is electrically benign and facilitates charge separa- 

ion and collection [ 11 , 12 ] while others propose that GB plays as

he nonradiative recombination center and deteriorates the device 

erformance [8] . 

Besides the point defects, twinning, stacking faults, and GB, 

ntiphase boundary (APB) also commonly exists in the PSCs. In- 

eed, previous studies reported APB usually presents unique elec- 

rical and ionic properties that are absent in the bulk [13–15] . 

n oxide perovskites, atomic-resolved transmission electron mi- 

roscopy (TEM) images show that APB displays an antipolar phase 

n La 2/3 Sr 1/3 MnO 3 and induces a giant piezoelectric coefficient in 

aNbO 3 [16] . In transition metal dichalcogenides, APB acts as a 

aceted metallic wire to facilitate electron transport [17] while it 

epels both electrons and holes in all-inorganic perovskite [18] . Re- 

ucing the APB defects in GaInP 2 films significantly increases the 

inority carrier lifetime and eliminates rapid carrier recombina- 

ion [19] . APB also has a great impact on ion migration in func- 

ional devices. Kaufman et al. revealed that APB migration is a 

undamental diffusion mechanism in sodium layered oxide with 

uite low kinetic barriers [20] . Also, APB provides additional dif- 

usion channels for lithium-ion migration in Li x CoO 2 [21] . Heisig 

t al. find that APB constitutes fast cation diffusion in SrTiO 3 

emristive devices and decreases the diffusion barrier of Sr 2 + 

rom 4.0 eV to 1.3 eV [22] , and thus SrTiO 3 memristive devices 

ith intentionally induced APB requires no forming steps [23] . 

onsidering the great impact of APB on electrical and ionic ac- 

ivities, which are closely related to the optoelectronic perfor- 

ance of PSCs, it is necessary to identify the atomic structure 

f APB in OIHPs and reveal how it influences the optoelectronic 

roperties. 

So far, there have been few reports of the atomic structure of 

PB in OIHPs, let alone its impact on the electrical and ionic ac- 

ivity. This is mainly because APB features a half-unit-cell shift of 

egistry with respect to two adjacent regions. Although TEM proves 

o be one of the most powerful tools to study APB [24] , OIHPs are

xtremely sensitive to electron beam illumination [ 25 , 26 ], making 

t challenging to observe atomic-scale structures of APB. Recently, 

othmann et al. have successfully observed the atomic structure, 

oundary, and defects of CH(NH 2 ) 2 PbI 3 (FAPbI 3 ) by low dose scan- 

ing TEM (STEM) techniques [27] . In this work, we adopted sim- 

lar low-dose STEM techniques to resolve the atomic structure of 

PB in MAPbI 3 and then clarified its impact on electrical and 

onic activities via density functional theory (DFT) calculations. 

tomic-scale images show that APB is composed of the edge- 

hared [PbI 6 ] 
4 − octahedron and prefers to propagate along the 

100] and [010] directions. Based on such an atomic structure, the 

ffect of APB in MAPbI 3 on the electrical/ionic activity is clarified 

y DFT calculations. We find that while APB in MAPbI 3 does not in- 

roduce any deep-level defects and repels both electrons and holes, 

he diffusion barriers of CH 3 NH 3 
+ (MA 

+ ), Pb 2 + , and I − are lowered

t the APB compared to that in the bulk MAPbI 3 . These suggest 

hat APB provides a fast ion-migration channel, facilitating a more 

acile decomposition of MAPbI 3 into PbI 2 . These findings provide 

tomic-scale insights into the structure of APB in MAPbI 3 and clar- 

fy the influence of APB on electrical/ionic activity, which enhances 

ur understanding of the correlations between structures and op- 

oelectronic properties. 

t

2

. Materials and methods 

.1. MAPbI 3 synthesis 

MAPbI 3 nanocrystals were bought from Xiamen Luman Tech- 

ology Co., Ltd. MAPbI 3 films were grown directly on the ultra- 

hin carbon-coated copper TEM grids, as previously reported [28] . 

pecifically, the precursor solution was prepared by mixing 99.5% 

ure methlammonium iodide (MAI) and 99.999% lead iodide (PbI 2 ) 

n dimethylformamide to get a 45 wt.% solution. Then the obtained 

recursor solution was deposited on ultrathin carbon-coated cop- 

er grids (300 mesh) by spin coating at 60 0 0 r.p.m. for 70 s. During

his process, 50 μL chlorobenzene was dropped on the spinning 

ubstrate after 30 s, followed by annealing at 100 °C for 10 min. 

hus the MAPbI 3 film can be obtained [29] . 

.2. CsPbBr 3 synthesis 

CsBr (0.4 mmol) and PbBr 2 (0.4 mmol) were dissolved in 

imethylformamide (10 mL). 1 mL oleic acid and 0.5 mL oleylamine 

ere added into the precursor solution. After, 1 mL precursor so- 

ution was added into 10 mL toluene quickly with strong stirring. 

hen 1 mL solution was mixed with 4 mL methyl acetate, and cen- 

rifuged at 80 0 0 r.p.m. for 4 min, followed by dissolving into 1 mL

oluene to get CsPbBr 3 crystals [30] . 

.3. Characterization 

The selected area electron diffraction (SAED) patterns and STEM 

mages were conducted at an aberration-corrected FEI (Titan Cubed 

hemis G2) operated at 300 kV. SAED images were obtained at 

 e Å ̊A 

−2 s −1 . STEM images of MAPbI 3 were acquired at a cur-

ent of 1 pA, a convergence semi-angle of 21.4 mrad, and a col- 

ection semi-angle snap in the range of 25 −153 mrad, which al- 

ows the efficient imaging of low-Z elements [31] . The specific 

maging condition was summarized in Table S1. The dose rate in 

TEM mode is estimated by dividing the screen current by the 

rea of the raster [32] . To reduce the electron beam damage, the 

pherical aberration and focus were adjusted away from imaged 

reas. Most grains in MAPbI 3 thin film are grown with the [001] 

irection that is vertical to the thin carbon substrate ( Fig. 1 ). In

his case, most STEM images present atomic resolution along the 

001] direction without adjusting the zone axis. Electron energy 

oss spectroscopy (EELS) spectra were obtained at 300 keV, 30 pA, 

ith the convergence semi-angle 30 mrad and collection semi- 

ngle 5.9 mrad. HRTEM images were acquired by a DDEC camera 

sing electron-counting mode with the dose fractionation function. 

he drift was corrected by DigitalMicrograph software. The original 

mage stack contains 40 subframes in 4 s. Atomistic models were 

onstructed by VESTA software. STEM images in Fig. 2 c, Fig. 3 a, 

, Fig. 4 , Fig. S5, Fig. S8, Fig. S10 and Fig. S11 have been filtered

y Gaussian blur and Fig. 4 is stacking with 5 images. The orig- 

nal images were provided in supplementary materials. The area 

f each grain in MAPbI 3 film was acquired by the imageJ soft- 

are. Multislice simulations of the STEM were performed by using 

STEM software simulation ( https://www.physics.hu-berlin.de/en/ 

em/software/software _ qstem ) according to the experimental pa- 

ameters. 

.4. Density functional theory calculations 

Our first-principles calculations were carried out within the 

ramework of DFT as implemented in the Vienna ab initio simu- 

ation package code [ 33 , 34 ]. The electron-ion interactions were de- 

cribed by the projector augmented-wave method [35] . The elec- 

ron exchange-correlation was treated by a generalized gradient 

https://www.physics.hu-berlin.de/en/sem/software/software_qstem
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Fig. 1. Morphology and crystallinity of MAPbI 3 nanoparticles and film. a TEM image showing nano-particles with size 10–20 nm. b The corresponding FFT pattern. The 

dashed half-circles indicate the {110}, {112}, {022}, {130}, and {004} planes of MAPbI 3 . c TEM image of polycrystalline MAPbI 3 film. d Electron diffraction pattern along the 

[001] direction of MAPbI 3 , acquired from the region highlighted by the white circle in c. 
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pproximation with Perdew-Bruke-Ernzerhof functional [36] . The 

inetic cutoff energy was set as 500 eV for the Kohn-Sham orbitals 

eing expanded on the plane-wave basis. The supercell size of APB 

as repeated periodically along the [100] direction. The atomic po- 

itions and lattice constants were fully optimized with a conjugate 

radient algorithm until the Hellman-Feynman force on each atom 

s less than 0.01 eV/ ̊A [37] . The Monkhorst-Pack k-point meshes 

ere sampled as 9 × 9 × 7 and 3 × 9 × 7 for the MAPbI 3 and APB,

espectively [38] . The minimum energy pathways of ions migra- 

ion were determined through the climbing image nudged elastic 

and method [39] based on the interatomic forces and total en- 

rgies acquired from DFT calculations. We performed the Ab ini- 

io molecular dynamic (AIMD) simulation in a canonical ensemble. 

he Brillouin zone was sampled at the � point and the time step 

f the AIMD simulation is 1 fs. 

. Results and discussion 

Nanocrystal and polycrystal MAPbI 3 are chosen to investigate 

he atomic structures of the defects in MAPbI 3 . Fig. 1 a shows the

EM image of nanocrystal MAPbI 3 with size about 10–20 nm and 

he corresponding fast Fourier transform (FFT) pattern presents the 

110}, {112}, {022}, {130} and {040} planes of MAPbI ( Fig. 1 b). 
3 (

3 
olycrystalline MAPbI 3 thin film was directly grown on the ultra- 

hin carbon-coated TEM copper grids. Each domain size is around 

0 0–30 0 nm ( Fig. 1 c) with good crystallinity ( Fig. 1 d). The poly-

rystalline MAPbI 3 thin film thickness is estimated to be 30–45 nm 

ased on EELS measurements (Fig. S2). 

Since MAPbI 3 is sensitive to the electron beam [40–42] , 

ow-dose imaging techniques including direct-detection electron- 

ounting (DDEC) camera and low-dose scanning transmission elec- 

ron microscopy (STEM) were used to obtain the atomic structures 

f MAPbI 3 ( Fig. 2 ). Fig. 2 a shows high resolution TEM (HRTEM) 

mage acquired at a dose of 28.2 e Å 

−2 by DDEC camera from 

anocrystal MAPbI 3 . Based on our previous study by comparing 

he HRTEM simulation (Fig. S3) and structural features of MAPbI 3 
43] , the yellow, blue and white circles are identified to be Pb 2 + /I −,

 

− and MA 

+ columns respectively. Yet there are many MA 

+ vacan- 

ies as highlighted by the yellow squares in Fig. 2 a under electron 

eam illumination [43] , thus the corresponding FFT pattern shows 

uperstructure spots ( Fig. 2 b). In contrast, the acquired STEM image 

f polycrystal MAPbI 3 shows more visible atomic columns along 

he [001] direction. The yellow, blue and white circles present 

b 2 + /I −, I − and MA 

+ columns according to the Z-contrast feature 

f STEM imaging. By comparing the STEM simulation of MAPbI 3 
Fig. S4) with the experimental image ( Fig. 2 c), some MA 

+ vacan- 



S. Chen, C. Wu, Q. Shang et al. Acta Materialia 234 (2022) 118010 

Fig. 2. Low-dose imaging of the atomic structure of MAPbI 3 . a HRTEM image of nanocrystal MAPbI 3 at a dose of 28.2 e Å −2 by using a direct-detection electron-counting 

camera. The yellow circle shows the Pb 2 + /I − columns, the blue circle shows pure I − columns and the white circle shows the MA + columns. The yellow squares indicate the 

MA + vacancies. b The corresponding FFT pattern along the [001] direction. The yellow circles mark the superstructure diffraction spots. c Filtered STEM image of MAPbI 3 film 

directly grown on the ultrathin carbon-coated TEM grid at a dose of 96.4 e Å −2 . The original STEM image is shown in Fig. S12a. The yellow, blue, and white circles represent 

Pb 2 + /I − , I − , and MA + columns. d The corresponding FFT pattern along the [001] direction. 
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ies can be identified while some columns belonging to MA 

+ show 

ncreased intensity (as shown by the blue arrow in Fig. S4) likely 

ue to the diffusion of I − and Pb 2 + to the columns of MA 

+ [43] .

his suggests the obtained structure might suffer from beam dam- 

ge with higher-order diffraction spots lost ( Fig. 2 d). However, it 

s difficult to quantify the content of MA 

+ vacancies due to the 

ow intensity of MA 

+ as well as the diffusion of I − and Pb 2 + to

he columns of MA 

+ . In addition, the MA 

+ is light while the I −

nd Pb 2 + are heavy and the very different mass causes significantly 

ifferent dechanneling effect, making the quantification even more 

hallenging. With the increased electron dose, MAPbI 3 gradually 

ecomposes into PbI 2 within 500.0 e Å 

−2 (Fig. S5). For both of 

hese two imaging techniques, MA 

+ vacancies are inevitably gen- 

rated even at a relatively low dose that is necessary for decent 

tomic structure visualization. The contrast of TEM images highly 

epends on the thickness of the sample and the imaging defo- 

us and thus is less reliable to identify specific atomic columns, 

hile the contrast of STEM images is easy to interpret and sen- 

itive to the atomic number (Z). Accordingly, we adopt STEM 

echniques to characterize the atomic structures of the defects in 

APbI 3 . 
4 
Fig. 3 a is a STEM image of the MAPbI 3 along the [001] direction.

ome boundaries are indicated by the white lines. These bound- 

ries prefer to lie along the [100] and [010] directions. Since the 

ontrast of STEM images is sensitive to Z, each type of the atomic 

olumn can be identified as indicated in magnified Fig. 3 b. Note 

hat MA 

+ vacancies are formed due to the beam damage while 

he same structure without MA 

+ is verified to be unstable (Fig. 

6), thus the atomic model of the boundary before forming MA 

+ 

acancies is proposed in Fig. 3 c,d. The structure transition from 

ristine MAPbI 3 ( Fig. 3 c) to the boundary structure ( Fig. 3 d) can

e achieved as follows: the right region with green octahedrons 

hifts a half of the unit cell along the [100]/[010] direction, ac- 

ompanied by the corner-sharing [PbI 6 ] 
4 − octahedron transform- 

ng into edge-shared one. Indeed, this is a typical feature of the 

PB. Since electron beam usually leads to the formation of vacan- 

ies and local ion migration [ 25 , 27 , 43 ], such a collective shift of

tomic columns in APB should be the pristine feature of MAPbI 3 
ather than induced by the electron beam illumination. The DFT- 

ptimized atomic structure of APB is shown in Fig. S7 and the for- 

ation energy of such APB is calculated to be 0.8 eV per unit, in- 

icating APB is easy to form during the synthesis process. 
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Fig. 3. Atomic structure of antiphase boundary in MAPbI 3 . a Atomic structure of APB along the [001] direction. The white lines highlight that APB prefers to lie along the 

[100] and [010] directions. b Enlarged view of the atomic structure of APB. The yellow, blue, and white circles indicate Pb 2 + /I − , I − , and MA + columns, respectively. Fig. a 

and b have been filtered and the original STEM images are shown in Fig. S12 b and c. c Atomic model of MAPbI 3 . The [PbI 6 ] 
4 − octahedrons are highlighted by the purple 

(left region) and green color (right region). d Atomic model of APB in MAPbI 3 . After green octahedrons in MAPbI 3 shifts a half of the unit cell along the a/b direction, as the 

black arrows indicate, the structure transforms into APB. The corner-sharing octahedrons become edge-shared ones. The blue hexagon in d corresponds to the yellow one in 

a and b. Pink, blue, and yellow balls indicate MA + , Pb 2 + , and I − respectively. 
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More representative STEM images of the APB defect in MAPbI 3 
re shown in Fig. S8. The line length of APB ranges from 3 nm to

0 nm. Based on the total line length of these APB in one grain

71.1 nm) and the corresponding area (2.67 × 10 3 nm 

2 ), the den- 

ity of APB, defined as the line length of APB per unit area [44] , is

stimated to be 26.4 μm 

−1 . Considering we have not scanned the 

hole grain of the film, it is likely the line length of APB in one

hole grain is also 71.1 nm, leading to a minimum APB density 

f 1.4 μm 

−1 with an average area of one grain at 5.06 × 10 4 nm 

2 

Fig. S1b). Thus the density of APB defects is roughly estimated 

o range from 1.4 to 26.4 μm 

−1 , which shows a similar magni- 

ude to that reported in GaAs [44] . Moreover, such APB structures 

ave also been observed in all-inorganic perovskite (e.g. CsPbBr 3 ). 

ig. 4 a is the atomic-scale STEM image of orthogonal CsPbBr 3 along 

he [110] direction judging from the corresponding FFT pattern 

 Fig. 4 b). Yellow, blue and white circles in Fig. 4 a indicate the

b 2 + /Br −, Br −, and Cs + columns. Based on the enlarged image in

ig. 4 c, the atomic structure of such APB structure can be iden- 

ified ( Fig. 4 d), which is similar to that observed in MAPbI 3 , sug-

esting such an APB defect is general in OIHPs and its all-inorganic 

ounterpart. Note that such an APB structure is a 90 ° boundary, 

hich is difficult to identify by electron diffraction or FFT patterns 

ithout atomic-scale imaging. Indeed, most previous electron mi- 

roscopy studies failed to observe them, without which the effect 

n the material performance is impossible to establish. 

Having obtained the atomic structure of APB, we are now ready 

o investigate how such an APB influences the electrical proper- 

ies by DFT calculations. Fig. 5 a shows the density of state (DOS) 
5 
f MAPbI 3 and APB. It is observed that the APB does not intro- 

uce any deep-level defects within the bandgap, which usually 

revents charge transport and facilitates the nonradiative recom- 

ination. To reveal its effect on the electron and hole transport, 

e further examined the band diagram across the APB. Fig. 5 b 

resents a layer-by-layer projection of the DOS (LDOS) across the 

PB. A large bandgap offset can be observed across the APB. Specif- 

cally, the conduction band minimum (CBM) offsets + 31 meV while 

he valence band maximum (VBM) offsets −41 meV at the APB, 

hus APB features a type-I band alignment, which efficiently repels 

oth electrons and holes [45] . This result is consistent with the 

harge density of the CBM and VBM of APB as shown in Fig. 5 c-

. It is observed that the evenly-distributed charge density of CBM 

nd VBM in the bulk MAPbI 3 decreases at the APB since the posi- 

ive offset of CBM repels away electrons from APB and the negative 

ffset of VBM also drives the holes away from it. 

It is also desirable to clarify the influence of APB on ion migra- 

ion, which is significant for PSCs. Previous studies show that MA 

+ 

nd I - are easy to migrate within MAPbI3 while the diffusion bar- 

ier of Pb2 + is higher [46] , which can be induced by high temper- 

tures [47] . By DFT calculations, we have compared the diffusion 

arriers of MA 

+ , Pb 2+ , and I - at the APB to those in the bulk under

 similar diffusion pathway for each ion as shown in Fig. 6. Fig. 6 a

nd Fig. 6 b show the schematic diagram of vacancy-mediated mi- 

ration pathways of these ions in the bulk and at the APB. Specif- 

cally, MA 

+ diffuses to the neighbouring vacant A-site while Pb 2+ 

igrates along the diagonal of the (110) plane through Pb 2+ va- 

ancy and I - migrates along an edge of the octahedron, as illus- 
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Fig. 4. Atomic structure of APB in CsPbBr 3 . a, c Atomic-scale STEM image of APB in CsPbBr 3 . Yellow, blue and white circles indicate the Pb 2 + /Br − , Br − , and Cs + columns. 

b The corresponding FFT pattern along the [110] direction of orthogonal CsPbBr 3 . d Atomistic configuration of the APB structure in CsPbBr 3 . Pink, purple, and orange balls 

represent Cs + , Pb 2 + /Br − , and Br − columns, respectively. These STEM images have been filtered using Gaussian blur after stacking with 5 images. The original images were 

shown in Fig. S13. 
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rated in Fig. S9. Fig. 6 c and Table S2 present the diffusion barriers

f MA 

+ , Pb 2+ , and I - along the corresponding pathways. The diffu- 

ion barriers in the bulk MAPbI 3 for MA 

+ , Pb 2+ , and I - is 0.98, 2.37,

nd 0.55 eV, similar to the reported values [46] while the diffusion 

arrier of MA 

+ , Pb 2+ , and I - decreases to 0.77, 1.38 and 0.43 eV at

he APB. This suggests MA 

+ , Pb 2+ , and I - are easier to migrate along

ith the APB, which serves as a fast ion-diffusion channel and 

ikely causes a more facile decomposition of MAPbI3. As shown in 

ig. S10, MAPbI 3 with APB structures decomposes into PbI 2 within 

85.6 e Å-2, which is lower than that of the bulk MAPbI3 (500 e 
˚ -2). 

The intrinsic optoelectronic properties of OIHPs are greatly in- 

uenced by the defects within the crystal [ 6 , 48 ]. To fabricate high-

erformance PSCs, it is necessary to enhance the understanding of 

efects in OIHPs. The frequently-used techniques to characterize 

he defects like steady-state photoluminescence [49] , space charge 

imited current [50] , and thermally simulated current [51] can pro- 

ide useful information about defects, but they are unable to iden- 
6

ify the specific types of defects as well as their atomic struc- 

ures. Accordingly TEM-based techniques have been widely used 

o reveal the structural defects of halide perovskites at multiple 

cales [ 18 , 28 , 52-54 ]. However, due to the extreme beam sensitiv-

ty of OIHPs, chemical and structural changes occur during TEM 

haracterizations, especially for high-dose techniques like conven- 

ional HRTEM, energy dispersive spectroscopy, EELS and in situ 

EM techniques [55] . For example, the electron beam illumination 

s reported to induce the continuous phase transition from MAPbI 3 
o PbI 2 while most researches failed to notice such degradation 

nd mistakenly identified PbI 2 as MAPbI 3 [ 25 , 40 ]. Besides, con- 

idering the large doses during in situ TEM study of OIHPs [47] , 

he electron-beam-induced damage possibly contributes a lot to 

he observed phenomena. Thus the low dose imaging technique 

s of great importance to reveal the intrinsic structural features of 

IHPs. 

To decrease the electron beam damage, we adopted low-dose 

EM imaging techniques. A previous study has observed the APB 
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Fig. 5. The effect of APB on electrical properties. a The DOS of the bulk MAPbI 3 and APB defect. b LDOS and band diagram of APB with a positive offset (31 meV) of the 

conduction band and a negative offset ( −41 meV) of the valance band, thus repelling both electrons and holes. c, d Charge density of CBM and VBM of the bulk MAPbI 3 . e, 

f Charge density of CBM and VBM of the APB defect. 

Fig. 6. The effect of APB on ion migration. a, b Schematic diagram to illustrate the migration pathway of MA + , Pb 2 + , and I − in the bulk MAPbI 3 and at the APB. Pink, 

blue, and yellow balls indicate MA + , Pb 2 + , and I − respectively. The diffusion pathway for each ion in the bulk MAPbI 3 and at the APB is chosen to be similar for a better 

comparison of the migration barrier. The specific pathway in the optimized structure can be found in Fig. S9. c The diffusion barriers of MA + , Pb 2 + , and I − along the 

corresponding diffusion pathways in a and b at the APB and in the bulk MAPbI 3 . The diffusion barriers have also been listed in Table S2. 
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n FAPbI 3 , though the elaborate atomic-scale configuration is still 

nknown [27] . By using low dose STEM techniques, we directly 

bserved the existence of APB in MAPbI 3 and resolved its atomic 

tructure. Based on the identified atomic-scale configuration of 

PB, we further clarified its influence on the electrical and ionic 

ctivities of OIHPs with the assistance of DFT calculations, con- 

ributing to an improved understanding on the relationship be- 

ween defect structures and properties. In traditional semiconduc- 
7 
ors, planar defects usually introduce deep-level defects within the 

andgap, hindering the charges transport and facilitating the non- 

adiative recombination [18] . In contrast, our work reveals that the 

lanar defect of APB in MAPbI 3 does not introduce any deep-level 

efects within the bandgap. Moreover, such APB repels the elec- 

rons and holes and features a type-I band alignment. It has been 

eported that such type-I band alignment at the grain boundaries 

n the surface of OIHPs can effectively repel carriers and return 
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hem to the inside of the grain, thus decreasing the carrier loss 

nd facilitating an improved optoelectronic performance [ 45 , 56 ]. 

he APB observed in our work is mainly inside the grain, and thus 

elicate engineering is necessary to control its distribution. 

Furthermore, ion migration is regarded as one of the most im- 

ortant issues in PSCs, responsible for phase segregation, J-V hys- 

eresis, and device degradation [57] . Such ion migration can be 

ntrinsic due to the low migration energy. Our work finds that 

he APB provides additional ion diffusion channels and the diffu- 

ion barrier of MA 

+ , Pb 2 + , and I − decreases by 21.8%, 41.8%, and

0.4% respectively at the APB. Such a low diffusion barrier induces 

asier ion migration and greatly increases the chemical activity 

f MAPbI 3 , leading to more facile structure degradation (Fig. S10) 

hat destroys long-term operational stabilities [58] . In particular, 

he decrease of the diffusion barrier for Pb 2 + from 2.37 to 1.38 eV 

akes it easier for Pb 2 + to diffusion, as indicated by Pb 2 + vacan- 

ies (Fig. S11) and the increased intensity at the columns belong- 

ng to MA 

+ (highlighted by the circles in Fig. 3 a). The diffusion of

b 2 + can form Pb 2 + interstitials and Pb 2 + -related antistites, both 

f which can create deep-level defect traps as recombination cen- 

ers [7] and are detrimental to efficient charge extractions. These 

ndings suggest efficient control and engineering of defects are 

ighly desirable for high-performance PSCs. For example, reduc- 

ng the density of the twin boundaries in MA 1-x FA x PbI 3 via defect- 

ngineering [5] and minimizing hydrogen vacancies [59] enables 

uch-improved performance of PSCs. 

. Conclusions 

In summary, by using low dose STEM techniques, we have 

uccessfully observed the existence of APB in OIHPs, revealed 

ts atomic structure, and further clarified its impact on elec- 

ronic structure, ion migration, and structure instabilities. Atomic- 

esolution STEM images show that the APB consists of edge- 

haring [PbI 6 ] 
4 − octahedron and lies along the [100] and [010] di- 

ections. Further DFT calculations based on the identified atomic- 

cale configuration show that the APB repels both electrons and 

oles and facilitates fast diffusion of MA 

+ , Pb 2 + , and I −. The fast

on diffusion at the APB further leads to a quick decomposition 

nto PbI 2 . These findings enhance a better understanding of the 

elationships between structures and optoelectronic properties of 

IHPs and suggest that controlling the APB is essential for their 

tability. 
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